A new Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation

نویسندگان

  • Qionglei Chen
  • Changxing Miao
  • Zhifei Zhang
چکیده

We show a new Bernstein’s inequality which generalizes the results of CannonePlanchon, Danchin and Lemarié-Rieusset. As an application of this inequality, we prove the global well-posedness of the 2D quasi-geostrophic equation with the critical and supercritical dissipation for the small initial data in the critical Besov space, and local wellposedness for the large initial data. Mathematics Subject Classification (2000): 76U05, 76B03, 35Q35

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation

In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies ‖∇θ0‖1−2s L∞ ‖θ0‖ L∞ < cs for some small number cs > 0, where s is the power of the fractional Laplacian, then no finite time singularity will oc...

متن کامل

Global Well-posedness for the Critical 2d Dissipative Quasi-geostrophic Equation

We give an elementary proof of the global well-posedness for the critical 2D dissipative quasi-geostrophic equation. The argument is based on a non-local maximum principle involving appropriate moduli of continuity.

متن کامل

Regularity Criteria for the Dissipative Quasi-geostrophic Equations in Hölder Spaces

We study regularity criteria for weak solutions of the dissipative quasi-geostrophic equation (with dissipation (−∆)γ/2, 0 < γ ≤ 1). We show in this paper that if θ ∈ C((0, T ); C1−γ), or θ ∈ Lr((0, T ); Cα) with α = 1−γ+ γ r is a weak solution of the 2D quasi-geostrophic equation, then θ is a classical solution in (0, T ]× R2. This result improves our previous result in [18].

متن کامل

Asymptotic behavior of the solutions to the 2D dissipative quasi-geostrophic flows

In this paper we derive a decay rate of the L-norm of the solution to the 2-D dissipative quasi-geostrophic flows comparing with the corresponding linear equation. We use a new, concise and direct method to avoid using the Fourier splitting technique completely and make the paper be self-contained without using any previous decay result. Mathematics Subject Classification(2000): 35Q35, 76D05

متن کامل

On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces

In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L, with p ∈ [1,∞]. Local results for arbitrary initial data are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008